
doi: 10.1098/rsbl.2009.0612
, 74-77 first published online 9 September 20096 2010 Biol. Lett.

 
Jian J. Duan, Jonathan G. Lundgren, Steve Naranjo and Michelle Marvier
 
field

 crops from laboratory toBtExtrapolating non-target risk of 
 
 

Supplementary data

ml
http://rsbl.royalsocietypublishing.org/content/suppl/2009/09/08/rsbl.2009.0612.DC1.ht

 "Data Supplement"

References
http://rsbl.royalsocietypublishing.org/content/6/1/74.full.html#ref-list-1

 This article cites 8 articles, 1 of which can be accessed free

This article is free to access

Subject collections

 (288 articles)environmental science   �
 (1279 articles)ecology   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsbl.royalsocietypublishing.org/subscriptions go to: Biol. Lett.To subscribe to 

This journal is © 2010 The Royal Society

 on March 17, 2010rsbl.royalsocietypublishing.orgDownloaded from 

http://rsbl.royalsocietypublishing.org/content/suppl/2009/09/08/rsbl.2009.0612.DC1.html
http://rsbl.royalsocietypublishing.org/content/6/1/74.full.html#ref-list-1
http://rsbl.royalsocietypublishing.org/cgi/collection/ecology
http://rsbl.royalsocietypublishing.org/cgi/collection/environmental_science
http://rsbl.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roybiolett;6/1/74&return_type=article&return_url=http://rsbl.royalsocietypublishing.org/content/6/1/74.full.pdf
http://rsbl.royalsocietypublishing.org/subscriptions
http://rsbl.royalsocietypublishing.org/


 on March 17, 2010rsbl.royalsocietypublishing.orgDownloaded from 
Biol. Lett. (2010) 6, 74–77

doi:10.1098/rsbl.2009.0612

Published online 9 September 2009
Community ecology

Extrapolating non-target
risk of Bt crops from
laboratory to field
Jian J. Duan1, Jonathan G. Lundgren2,
Steve Naranjo3 and Michelle Marvier4,*
1USDA-ARS, Beneficial Insects Introduction Research Unit,
Newark, DE 19713, USA
2USDA-ARS, North Central Agricultural Research Laboratory,
Brookings, SD 57006, USA
3USDA-ARS, Arid-Land Agricultural Research Center,
Maricopa, AZ 85238, USA
4Environmental Studies Institute, Santa Clara University,
Santa Clara, CA 95053, USA
*Author for correspondence (mmarvier@scu.edu).

The tiered approach to assessing ecological risk
of insect-resistant transgenic crops assumes
that lower tier laboratory studies, which expose
surrogate non-target organisms to high doses of
insecticidal proteins, can detect harmful effects
that might be manifested in the field. To test
this assumption, we performed meta-analyses
comparing results for non-target invertebrates
exposed to Bacillus thuringiensis (Bt) Cry pro-
teins in laboratory studies with results derived
from independent field studies examining effects
on the abundance of non-target invertebrates.
For Lepidopteran-active Cry proteins, laboratory
studies correctly predicted the reduced field
abundance of non-target Lepidoptera. However,
laboratory studies incorporating tri-trophic
interactions of Bt plants, herbivores and parasi-
toids were better correlated with the decreased
field abundance of parasitoids than were direct-
exposure assays. For predators, laboratory
tri-trophic studies predicted reduced abundances
that were not realized in field studies and thus
overestimated ecological risk. Exposure to
Coleopteran-active Cry proteins did not signifi-
cantly reduce the laboratory survival or field
abundance of any functional group examined.
Our findings support the assumption that labora-
tory studies of transgenic insecticidal crops show
effects that are either consistent with, or more
conservative than, those found in field studies,
with the important caveat that laboratory studies
should explore all ecologically relevant routes of
exposure.

Keywords: non-target effects; Bt crops;
risk assessment; transgenic crops; meta-analysis

1. INTRODUCTION
Prior to commercialization in the USA, Canada and
European Union, the potential environmental risks of
transgenic insect-resistant crops are quantified via a
tiered assessment (US EPA 1998, 2007; Rose 2006).
A first step is the determination of the potential
hazard or toxicity of the insecticidal traits (e.g. Cry
Electronic supplementary material is available at http://dx.doi.org/10.
1098/rsbl.2009.0612 or via http://rsbl.royalsocietypublishing.org.
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proteins for crops expressing transgenes derived from
Bacillus thuringiensis (Bt)) to non-target organisms
(NTOs). Tier-I assessments of the NTO risk of trans-
genic insecticidal crops are conducted in the laboratory
where surrogate NTOs representing particular taxo-
nomic or functional guilds are subjected to
insecticidal proteins or plant tissues under worst-case
(typically greater than 10 times expected) exposures
(Romeis et al. 2008). If no toxicity to NTOs is ident-
ified in Tier-I assessments, the transgenic insecticidal
crop may be judged to have minimal risk. Alternatively,
if potential toxicity to NTOs is identified, additional
higher tier testing (e.g. semi-field or field experiments)
is conducted to further characterize risk under
more realistic exposures (Rose 2006). This tiered
approach to risk assessment for insect-resistant
transgenic crops has been advocated internationally
(Romeis et al. 2008), but debate continues over the
use of laboratory studies in predicting ecological effects
in the field (Andow & Hilbeck 2004; Romeis et al.
2006).

We used meta-analyses to test whether laboratory
studies of non-target effects of Bt Cry proteins are
consistent with results from field studies that com-
pare the abundance of NTOs in Bt crops versus
non-Bt counterparts. Because surrogate species are
often used in laboratory studies, comparisons of
effects measured in laboratory and field studies
often involve different species-by-toxin combinations.
Our analyses test the central assumption of tiered
risk assessment, which holds that laboratory assays
employing surrogate species provide estimates of
NTO effects that are either accurate or conservative
(meaning more negative) relative to those measured
in the field.
2. MATERIAL AND METHODS
Data were extracted from laboratory and field studies that evaluated
the effect of Bt Cry proteins or plant tissues containing the expressed
Cry proteins. Data were drawn from the ‘Nontarget effects of Bt crops
database’ (Marvier et al. 2007), supplemented with additional peer-
reviewed field studies and laboratory studies (peer-reviewed and
industry studies obtained from the US Environmental Protection
Agency) reported through late 2008.

We restricted analyses to classes of proteins for which both lab-
oratory and field data were available, which eliminated data
concerning Cry9, Cry34 and Cry35. We also excluded data for var-
ieties ‘stacked’ with other types of plant-incorporated protectants
(e.g. trypsin inhibitors and vegetative insecticidal proteins). Studies
included in our analyses involved Lepidopteran-active (Cry1 or
Cry2 class) and Coleopteran-active (Cry3 class) proteins expressed
either in Bt plant tissues or produced by genetically modified strains
of Bt or Escherichia coli. We enforced a minimum of five observations
in both the laboratory and field per functional group, thereby elimi-
nating data for omnivores tested against Lepidopteran-active
proteins, parasitoids tested against Coleopteran-active proteins and
all data concerning pollinators. Studies included in our analyses pre-
sented treatment means accompanied by standard deviations (s) and
sample sizes (n). When studies provided incomplete information,
authors were contacted directly. We required n1 . 0, n2 . 0, n1 þ
n2 . 2 and s1(n1 2 1) þ s2(n2 2 1) . 0. Data and additional details
of study selection are reported in the electronic supplementary
material.

In laboratory assays, NTOs were exposed in confined arenas to Bt
plant tissues or diet substrates containing Cry protein and a negative
(non-Bt) control. To maximize consistency among studies and
reduce issues of non-independence, we restricted analyses to
measures of survival or longevity. Laboratory assays for non-target
parasitoids and predators were categorized as direct-exposure
(NTOs were fed diets or plant substrates containing Bt Cry proteins)
or tri-trophic exposure (NTOs were given access to hosts or
prey that had ingested Bt Cry proteins) studies. Sufficient data
(n � 5) were available to compare these two study designs for
This journal is q 2009 The Royal Society
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Lepidopteran-active, but not Coleopteran-active proteins. Filtering
data by the above criteria resulted in 74 laboratory studies (unpub-
lished reports or published papers) yielding 284 observations;
studies commonly reported observations from multiple experiments,
Cry proteins, or non-target species.

For field studies, we restricted analyses to studies in which the
control was a non-Bt crop, neither the Bt nor the non-Bt crop was
sprayed with insecticides and abundance of NTOs was measured.
This yielded 52 field studies (1514 observations), covering maize
(producing Cry1 and Cry3 class proteins), cotton (Cry1 and
Cry2), potato (Cry3), rice (Cry1) and eggplant (Cry3).

A weighted mean effect size, Hedges’ d, was calculated for each
study as the difference between means for Bt and control treatments
divided by the pooled standard deviation and weighted by sampling
variance (Rosenberg et al. 2000). Negative values indicate reduced
survival or decreased abundance of NTOs in Bt compared with
control treatments. Random-effect models were used to compare
effect sizes between laboratory and field studies. To address the
mismatch of organisms tested in laboratory versus field studies, we
report analyses for the subset of non-target species that have been
sufficiently tested (n � 5) in both settings. Analyses were conducted
with METAWIN v. 2 (Rosenberg et al. 2000). Between-group
(laboratory versus field) heterogeneity (Q-value) was tested by
permutation.
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Figure 1. Effect sizes measured in the field versus laboratory
for major functional groups of non-target invertebrates.
Laboratory studies for parasitoids and predators used
either direct or tri-trophic exposure. Positive mean effect
sizes (Hedge’s d) for (a) Lepidopteran-active and

(b) Coleopteran-active Bt Cry proteins indicate improved
survival or increased abundance when exposed to Bt
plant tissues or purified Cry proteins relative to a non-Bt
control. Error bars represent unbiased, bootstrapped
95 per cent confidence intervals. Numbers denote total

observations per column. Medium grey bars, field; dark
grey bars, laboratory (direct exposure); light grey bars,
laboratory (tri-trophic).
3. RESULTS
For Lepidopteran-active Cry proteins (figure 1a),
both laboratory and field studies showed expected
significant adverse effects on non-target Lepidop-
teran herbivores, but mean effect sizes did not
differ by study type (Q ¼ 0.68, p ¼ 0.47). Mean
effects on non-Lepidopteran herbivores estimated
in the laboratory and field studies were statistically
indistinguishable from zero and did not differ
from one another (Q ¼ 0.58, p ¼ 0.38). Detritivores
were positively affected by exposure to Lepidop-
teran-active Cry proteins in laboratory studies but
not significantly affected in the field, and laboratory
and field studies did not differ (Q ¼ 1.79, p ¼ 0.13).

For parasitoids, direct-exposure laboratory studies
failed to detect significant negative effects seen in the
field (Q ¼ 31.59, p ¼ 0.001). By contrast, effects
measured in tri-trophic laboratory studies for parasi-
toids were in the same direction (negative), although
significantly smaller in magnitude, compared with
effects observed in the field (Q ¼ 8.44, p ¼ 0.005).
For predators, both direct-exposure laboratory studies
and studies of field abundance showed non-significant
effect sizes that did not differ from one another (Q ¼
0.46, p ¼ 0.47), whereas tri-trophic laboratory studies
showed adverse effects that were significantly
more negative than those measured in field studies
(Q ¼ 5.33, p ¼ 0.030).

For Coleopteran-active Cry proteins (figure 1b),
laboratory studies involving direct exposure did not
reveal statistically significant adverse effects for any
functional group examined. These results were
consistent with those from field studies for both
Coleopteran and non-Coleopteran herbivores. Detriti-
vores and omnivores benefited from exposure to Cry
proteins in laboratory but not field studies (detriti-
vores: Q ¼ 2.79, p ¼ 0.048; omnivores: Q ¼ 4.35,
p ¼ 0.015). Predators were unaffected by Bt proteins
in laboratory studies, but were more abundant
on Bt than on control plants in the field (Q ¼ 3.96,
p ¼ 0.05).

Analyses for four predator and three herbivore
species that have been sufficiently tested in both the
Biol. Lett. (2010)
laboratory and field support the assumption that
laboratory studies accurately predict effects on
field abundance (figure 2). However, laboratory
studies for Chrysoperla carnea yielded negative effects
not manifested in the field (Q ¼ 3.76, p ¼ 0.014).
4. DISCUSSION
Laboratory studies of NTOs test for potential hazard,
typically under worst-case exposure scenarios, with
the assumption that the absence of hazard in the lab-
oratory predicts an absence of ecological harm in
the field. To be precautionary, if laboratory studies

http://rsbl.royalsocietypublishing.org/
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Figure 2. Effect sizes measured in laboratory (direct and tri-
trophic studies pooled) versus field studies for species with
five or more observations per study type. Data are pooled
across Lepidopteran-active and Coleopteran-active Cry

protein studies. P, predator; H, herbivore. See figure 1 for
description of chart elements. Lighter grey bars, field;
darker grey bars, laboratory (tri-trophic and direct exposure).
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misestimate effects, they should overestimate risk,
thereby triggering follow-up studies. Our meta-
analyses indicate that, for the examined functional
groups of non-target invertebrates, laboratory studies
have, on average, been accurate or conservative in
predicting effects of Bt crops on field abundance of
trophic guilds.

For Lepidopteran-active Cry proteins, laboratory
studies correctly predicted the reduced field abun-
dance of non-target Lepidoptera. Positive effects of
Lepidopteran-active Cry proteins measured in the lab-
oratory for detritivores were not detected in the field; a
likely artefact of protein-deficient control diets used in
laboratory studies. Laboratory studies using tri-trophic
exposure overestimated ecological effects for predatory
insects, representing a successful application of the
tiered approach. Recent meta-analyses showed that
predator survival is reduced when fed on sublethally
damaged caterpillars (low-quality prey) but not on
prey unaffected by Cry proteins (Naranjo 2009).
Some predators may use prey selection to avoid
low-quality prey in the field.

For specialist parasitoids, tri-trophic, compared
with direct exposure, studies may better anticipate
the effects of Bt crops under natural conditions.
Adverse effects on parasitoids in tri-trophic exposure
studies are largely a function of parasitoids developing
within Cry-protein-‘intoxicated’ host caterpillars
(Naranjo 2009). Parasitoids reported in field studies
with Lepidopteran-resistant Bt maize comprised
specialist parasitoids such as Macrocentrus cingulum
Brischke (Hymenoptera: Braconidae). Because this
species relies solely on targeted Lepidopteran pests, it
is unsurprising that its abundance was reduced in Bt
maize owing to the effective control of its primary
Biol. Lett. (2010)
hosts (Wolfenbarger et al. 2008). Laboratory studies
test for hazard, but field testing may reveal ecological
effects that cannot be directly studied in the laboratory.
For parasitoids, reduced survival documented in tri-
trophic laboratory studies accurately correlates with
reduced abundance resulting from host scarcity in
the field.

Exposure to Coleopteran-active Cry proteins did
not significantly reduce the laboratory survival or
field abundance of any functional group examined.
Positive effects of Coleopteran-active Cry proteins in
the field for non-Coleopteran herbivores and predators
may be related to the release of aphids and other suck-
ing insect pests in unsprayed Bt potato and the
subsequent colonization of predators (Cloutier et al.
2008). Positive effects of Cry proteins for omnivores
probably arise from the use of protein-deficient control
diets in laboratory studies.

Our findings support the validity of the central
assumption underlying the tiered approach to risk
assessment of transgenic insecticidal crops. Labora-
tory studies of Bt Cry proteins predicted effects that
were on average either more conservative than or con-
sistent with effects measured in the field. It would
be problematic if laboratory studies predicted no or
positive effects, with negative effects revealed only
through field studies. One caveat to the support we
find for the tiered approach to risk assessment is
that laboratory studies should expose NTOs in the
full variety of relevant ecological contexts, which
may include indirect exposure via an intervening
trophic level. Finally, direct toxicity is only one way
that Bt crops may affect ecosystem services provided
by NTOs. Additional research on how Bt crops
affect the complex interactions within insect commu-
nities would benefit our understanding of the
long-term implications of widespread adoption of
this pest management technology (Lundgren et al.
in press).

Construction of Nontarget Effects of Bt Crops Database was
supported by EPA grant CR-832 147-01. Thanks to Doug
Luster (USDA-ARS Beneficial Insects Introduction
Research Unit) for helpful comments.
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